TABLE 1. Data

Material	K_0 , kb	K_0'	
α-SiO ₂	371.25	6.33	
Al_2O_3	2504.1	4.00	
Mg	344.04	4.07	
K	33.8	3.98	
Na	61.8	3.59	
Pb	416.0	6.30	

a > 0 and A > 0 (equation 3). For the case $(K_0' - m) < 0$ the parameters a and A are of opposite sign, and q is clearly > 0. We also need to know whether $2bx + c > (q)^{1/2}$. To answer this question, note that

$$q = (1 + A - am)^{2} + 4amA$$

$$= (1 + A + am)^{2} - 4am$$
and
$$2bx + c = 2m(P + a) + (1 + A - am)$$

$$= (1 + A + am) + 2mP$$
Clearly, for $C < 0$, $(q)^{1/2} < (1 + A + am)$
therefore $2bx + c > (q)^{1/2}$ for all $P \ge 0$. In

this case equation B2 is appropriately written in the logarithmic form

$$\frac{1}{(q)^{1/2}} \ln \left[\frac{(1+A+am)+2mP-(q)^{1/2}}{(1+A+am)+2mP+(q)^{1/2}} \right]$$

Fig. 8. Effect of varying m on extrapolated values of v/v_0 versus pressure for aluminum oxide.

answer the ques we write equat $K_0' - m), a =$

$$= \left[1 + \frac{2K_0'(\eta)}{2K_0'(\eta)}\right]$$

We note that both quare root of the ression are positiv $(q)^{1/2}$ for all P >garithmic form (quation B2.

After having eva on B1, for both ca P = 0 we then write tion 9).

AP

As has been emph he success of Murns tacular because the p/K_0 is determined Moreover, this parar

g. 9. Comparison o